
濟(jì)南冠宇智能科技有限公司
經(jīng)營模式:生產(chǎn)加工
地址:山東省濟(jì)南市歷城區(qū)大橋路西側(cè)零點(diǎn)物流以北濟(jì)南電子商務(wù)物流園2-312號
主營:智能道閘,車牌識別系統(tǒng),人臉識別系統(tǒng),廣告門,門禁系統(tǒng)
業(yè)務(wù)熱線:0531-88581615
無錫人行通道管理系統(tǒng)-冠宇現(xiàn)代
山東智能道閘,濟(jì)南車牌識別系統(tǒng),人臉識別門禁
傳統(tǒng)的人臉識別技術(shù)主要是基于可見光圖像的人臉識別,這也是人們熟悉的識別方式,已有30多年的研發(fā)歷史。但這種方式有著難以克服的缺陷,尤其在環(huán)境光照發(fā)生變化時,識別效果會急劇下降,無法滿足實(shí)際系統(tǒng)的需要。解決光照問題的方案有三維圖像人臉識別,和熱成像人臉識別。但這兩種技術(shù)還遠(yuǎn)不成熟,識別效果不盡人意。迅速發(fā)展起來的一種解決方案是基于主動近紅外圖像的多光源人臉識別技術(shù)。它可以克服光線變化的影響,已經(jīng)取得了的識別性能,在精度、穩(wěn)定性和速度方面的整體系統(tǒng)性能超過三維圖像人臉識別。這項(xiàng)技術(shù)在近兩三年發(fā)展迅速,使人臉識別技術(shù)逐漸走向?qū)嵱没?。人臉與人體的其它生物特征(指紋、虹膜等)一樣與生俱來,它的性和不易被的良好特性為身份鑒別提供了必要的前提,與其它類型的生物識別比較人臉識別具有如下特點(diǎn):非強(qiáng)制性:用戶不需要專門配合人臉采集設(shè)備,幾乎可以在無意識的狀態(tài)下就可獲取人臉圖像,這樣的取樣方式?jīng)]有“強(qiáng)制性”;非接觸性:用戶不需要和設(shè)備直接接觸就能獲取人臉圖像;
并發(fā)性:在實(shí)際應(yīng)用場景下可以進(jìn)行多個人臉的分揀、判斷及識別;









人臉圖像采集:不同的人臉圖像都能通過攝像鏡頭采集下來,比如靜態(tài)圖像、動態(tài)圖像、不同的位置、不同表情等方面都可以得到很好的采集。當(dāng)用戶在采集設(shè)備的拍攝范圍內(nèi)時,采集設(shè)備會自動搜索并拍攝用戶的人臉圖像。人臉檢測:人臉檢測在實(shí)際中主要用于人臉識別的預(yù)處理,即在圖像中準(zhǔn)確標(biāo)定出人臉的位置和大小。人臉圖像中包含的模式特征十分豐富,如直方圖特征、顏色特征、模板特征、結(jié)構(gòu)特征及Haar特征等。人臉檢測就是把這其中有用的信息挑出來,并利用這些特征實(shí)現(xiàn)人臉檢測。主流的人臉檢測方法基于以上特征采用Adaboost學(xué)習(xí)算法,Adaboost算法是一種用來分類的方法,它把一些比較弱的分類方法合在一起,組合出新的很強(qiáng)的分類方法。人臉檢測過程中使用Adaboost算法挑選出一些代表人臉的矩形特征(弱分類器),按照加權(quán)的方式將弱分類器構(gòu)造為一個強(qiáng)分類器,再將訓(xùn)練得到的若干強(qiáng)分類器串聯(lián)組成一個級聯(lián)結(jié)構(gòu)的層疊分類器,有效地提高分類器的檢測速度。


人臉圖像匹配與識別人臉圖像匹配與識別:提取的人臉圖像的特征數(shù)據(jù)與數(shù)據(jù)庫中存儲的特征模板進(jìn)行搜索匹配,通過設(shè)定一個閾值,當(dāng)相似度超過這一閾值,則把匹配得到的結(jié)果輸出。人臉識別就是將待識別的人臉特征與已得到的人臉特征模板進(jìn)行比較,根據(jù)相似程度對人臉的進(jìn)行判斷。這一過程又分為兩類:一類是確認(rèn),是一對一進(jìn)行圖像比較的過程,另一類是辨認(rèn),是一對多進(jìn)行圖像匹配對比的過程。

